Solid State Relays Industrial, 2-Pole ZS Type RA2A

- 2-Pole AC Solid State Relay
- · Zero switching
- For resistive and inductive AC loads
- · Direct copper bonding (DCB) technology
- LED indication
- Rated operational current: 2 x 25 and 2 x 40AACrms
- Rated operational voltage: 230 600VACrms
- Input range: 4.5 32VDC
- Non-repetitive peak voltage: Up to 1200Vp
- Opto-isolation: 4000VACrms

Product Description

This 2-pole industrial relay voltage. The same applies to minimises the space requirements in a control cabinet without compromising perforvoltage on control A, the corre- nal mechanical stress. tor is activated at the first zero specially crossing the

control B. LEDs indicate the control status of each pole. The optimised design is free of mance. By applying an input moulding mass to reduce inter-

sponding output semicondcu- The RA2A..M types have been customised line demanding inductive loads.

Ordering Key

RA 2 A 48 D 25 M

Solid State Relay ————————————————————————————————————	
Zero switching ————————————————————————————————————	
Rated operational voltage ————————————————————————————————————	
Control voltage ————————————————————————————————————	
Rated operational current ————————————————————————————————————	
Load type ————————————————————————————————————	

Type Selection

Switching mode	Rated operational voltage	Rated operational current	Control voltage	Non-rep. voltage	Load type
A: Zero switching	23: 230VACrms 40: 400VACrms 48: 480VACrms 60: 600VACrms	25: 2 x 25AACrms 40: 2 x 40AACrms	D: 4.5 - 32VDC	23: 650V _p 40: 850V _p 48: 1200V _p 60: 1200V _p	M: Inductive

Selection Guide

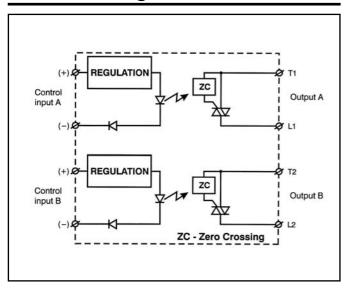
Rated operational voltage	Non-rep. voltage	Control voltage	Rated operationa 2 x 25AACrms	l current 2 x 40AACrms
230VACrms	650V _p	4.5 - 32VDC	RA2A23D25	RA2A23D40
			RA2A23D25M	RA2A23D40M
400VACrms	850V _p	4.5 - 32VDC	RA2A40D25	RA2A40D40
			RA2A40D25M	RA2A40D40M
480VACrms	1200V _p	4.5 - 32VDC	RA2A48D25	RA2A48D40
			RA2A48D25M	RA2A48D40M
600VACrms	1200V _p	4.5 - 32VDC	RA2A60D25	RA2A60D40
			RA2A60D25M	RA2A60D40M

Input Specifications

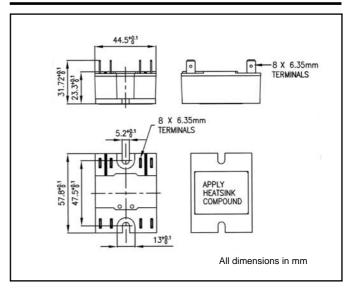
Control voltage range	4.5 - 32VDC
Pick-up voltage	4.25VDC
Drop-out voltage	2VDC
Input current per pole @ max. input voltage	≤10mA
Response time pick-up @ 50 Hz	≤10ms
Response time drop-out @ 50 Hz	≤10ms

Housing Specifications

Weight	Approx. 85g
Housing material	Noryl GFN 1, black
Base plate 25, 40A 40A (M type)	Aluminium, nickel-plated Copper, nickel-plated
FASTONTerminal size	6.3mm


General Specifications

	RA2A23	RA2A40	RA2A48	RA2A60
Operational voltage range	24 to 265VACrms	42 to 440VACrms	42 to 530VACrms	42 to 660VACrms
Non-rep. peak voltage	650V _p	850V _p	1200V _p	1200V _p
Rated insulation input -output/output - heatsink	4kV	4kV	4kV	4kV
Operational frequency range	45 to 65Hz	45 to 65Hz	45 to 65Hz	45 to 65Hz
LED ON indication (x2)	Yes (green)	Yes (green)	Yes (green)	Yes (green)
Power factor RA2A RA2AM	≥ 0.95 @ 230VAC ≥ 0.50 @ 230VAC	≥ 0.95 @ 400VAC ≥ 0.50 @ 400VAC	≥ 0.95 @ 480VAC ≥ 0.50 @ 480VAC	≥ 0.95 @ 600VAC ≥ 0.50 @ 600VAC
Zero voltage turn-on	< 15V	< 15V	< 15V	< 15V
Approvals	UL, cUL, CSA	UL, cUL, CSA	UL, cUL, CSA	UL, cUL, CSA
CE-marking	Yes	Yes	Yes	Yes
Conformance	VDE	VDE	VDE	VDE


Output Specifications

	RA2A25	RA2A40	RA2AD25M	RA2AD40M
Rated operational current AC 51 AC 53a	2 x 25AACrms	2 x 40AACrms	2 x 25AACrms 2 x 5AACrms	2 x 40AACrms 2 x 15AACrms
Minimum operational current	150mA	150mA	150mA	150mA
Non-rep. surge current t=10 ms	300A _p	390A _p	300A _p	580A _p
Off-state leakage current	< 3mA	< 3mA	< 3mA	< 3mA
I ² t for fusing t=1-10 ms	450A ² s	760A ² s	450A ² s	1680A ² s
On-state voltage drop @ rated current	≤ 1.6Vrms	≤ 1.6Vrms	≤ 1.6Vrms	≤ 1.6Vrms
Critical dV/dt off-state min.	500V/μs	500V/μs	500V/μs	500V/μs
Zero crossing detection	Yes	Yes	Yes	Yes

Functional Diagram

Dimensions

Heatsink Dimensions (load current versus ambient temperature)

RA 2....25/25M

Load curre	nt [A]		Thermal r [K/W]	esistance	:	Powe dissip	er pation [W]
50	1.11	0.94	0.78	0.62	0.46	0.29	62
45	1.36	1.17	0.99	0.80	0.61	0.43	54
40	1.68	1.47	1.25	1.03	0.81	0.60	46
35	2.06	1.80	1.54	1.29	1.03	0.77	39
30	2.5	2.2	1.87	1.56	1.25	0.94	32
25	3.1	2.7	2.3	1.9	1.6	1.17	26
20	4.0	3.5	3.0	2.5	2.0	1.52	20
15	6	5	4	3.5	2.8	2.1	14
10	9	8	7	6	4	3.3	9
5	18	16	14	12	9	7	4
	20	30	40	50	60	70	TA

Ambient temp. [°C]

RA 2....40

Load	nt [A] Thermal r		resistance	Power dissipati	on [W]		
80	0.68	0.56	0.44	0.32	0.19	0.07	82
72	0.87	0.73	0.59	0.45	0.31	0.17	72
64	1.10	0.94	0.78	0.62	0.45	0.29	62
56	1.41	1.22	1.03	0.83	0.64	0.45	52
48	1.8	1.6	1.36	1.13	0.90	0.67	43
40	2.3	2.0	1.7	1.4	1.1	0.86	35
32	3.0	2.6	2.2	1.9	1.5	1.11	27
24	4	4	3	2.6	2.0	1.5	20
16	6	6	5	4	3	2.4	13
8	13	12	10	8	7	5	6
	20	30	40	50	60	70	•

Ambient temp. [°C]

RA 2....40M

Load currer	ad rent [A]		Thermal resistance [K/W])	Powe dissip	r ation [W]
100	0.41	0.32	0.23	0.13	0.04	-	108
90	0.55	0.44	0.34	0.23	0.13	0.02	95
80	0.72	0.60	0.48	0.35	0.23	0.11	82
70	0.95	0.80	0.66	0.52	0.37	0.23	70
60	1.25	1.08	0.90	0.73	0.56	0.39	58
50	1.7	1.5	1.25	1.04	0.83	0.61	47
40	2.2	1.9	1.6	1.4	1.1	0.82	36
30	3	2.7	2.3	1.9	1.5	1.14	26
20	5	4	4	2.9	2.3	1.8	17
10	10	9	7	6	5	3.6	8
5	20	17	15	12	10	7	4
,	20	30	40	50	60	70	TA
						Ambient te	emp. [°C]

Heatsink Selection

Carlo Gavazzi Heatsink (see Accessories)	Thermal resistance	for power dissipation
No heatsink required		N/A
RHS 300	5.00K/W	> 0 W
RHS 100	3.00K/W	> 25 W
RHS 45C	2.70K/W	> 60 W
RHS 45B	2.00K/W	> 60 W
RHS 90A	1.35K/W	> 60 W
RHS 45A plus fan	1.25K/W	> 0 W
RHS 45B plus fan	1.20K/W	> 0 W
RHS 112A	1.10K/W	> 100 W
RHS 301	0.80K/W	> 70 W
RHS 90A plus fan	0.45K/W	> 0 W
RHS 112A plus fan	0.40K/W	> 0 W
RHS 301 plus fan	0.25K/W	> 0 W
Consult your distribution	> 0.25K/W	N/A
Infinite heatsink - No solution		N/A

Note: Add the currents of both poles and compare with datasheets for proper heatsink.

Each pole can handle up to the maximum current specified. Example: Each pole of the RA2A23D25 can handle a maximum of 25 A.

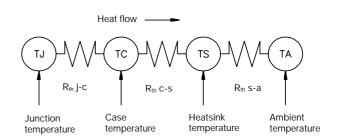
Insulation

Rated insulation voltage Input to output	≥ 4000VACrms
Rated insulation voltage Output to case	≥ 4000VACrms

Accessories

Heatsinks DIN rail adapter Varistors Fuses For further information refer to "General Accessories".

Applications

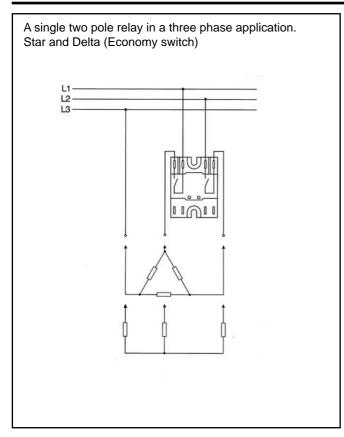

This relay is designed for use in applications in which it is exposed to high surge conditions. Care must be taken to ensure proper heatsinking when the relay is to be used at high sustained currents. Adequate electrical connection between relay terminals and cable must be ensured.

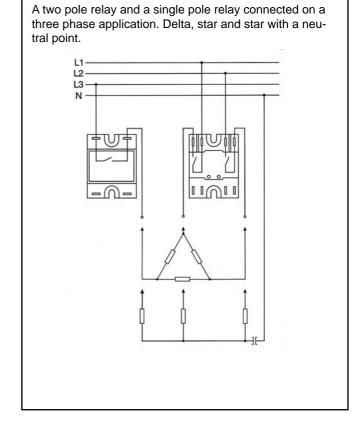
Thermal characteristics

The thermal design of Solid State Relays is very important.

It is essential that the user makes sure that cooling is adequate and that the maximum junction temperature of the relay is not exceeded.

If the heatsink is placed in a small closed room, control panel or the like, the power dissipation can cause the ambient temperature to rise. The heatsink is to be calculated on the basis of the ambient temperature and the increase in temperature.




Thermal resistance: R_{th} j-c = junction to case R_{th} c-s = case to heatsink R_{th} s-a = heatsink to ambient

Thermal Specifications

	RA2A25.	RA2A40	RA2A40M
Operating temperature	-20° to 70°C	-20° to 70°C	-20° to 70°C
Storage temperature	-20° to 80°C	-20° to 80°C	-20° to 80°C
Junction temperature	≤125°C	≤125°C	≤125°C
R _{th} junction to case 1 pole 2 pole	1K/W 0.5K/W	1K/W 0.5K/W	0.92K/W 0.46K/W
R _{th} junction to ambient	≤ 20K/W	≤ 20K/W	≤ 20K/W

Applications

